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Table 11. Heats of Solution of Trioxane in Different Solvents 

w o 1 -  
10'- AHsol,' u f u s i o n  

solvent (slope) kJ/mol kJ/mol 

dichlorome thane 1.3 14.0 -0.2 
chloroform 7.1 13.6 -0.6 
acetone 7.7 14.8 +0.6 
benzene 11.8 22.7 +8.5 
toluene 13.4 25.8 +11.6 
carbon 24.0 46.1 +31.9 

methanol 24.0 46.1 +31.9 
tetrachloride 

Heat of solution. 

In ideal solution, the solubility of trioxane would be given by 
( 7 )  

log x = (AH/2.303R)(I/T- l /To)  (1) 

where x = mole fraction of trioxane in solution; AH = 14.2 
kJ/mol, the heat of fusion of trioxane (8); T o  = 334 K, the 
melting point of trioxane; and R = 8.3144 J/(mol K), the gas 
constant. 

Substituting these values 

log x = -742/T + 2.22 (2) 

The straight line representing eq 2 is shown as curve 1 in Figure 
1. I t  appears that none of these solvents forms a perfectly 
ideal solution with trioxane. However, dichloromethane, chlo- 
roform, and acetone behave almost as ideal solvents: the de- 
viations are negligible. In these three solvents, the heats of 
solution and the heat of fusion of trioxane would differ very 
slightly. 

In  higher normal paraffins like n-cetane, trioxane is almost 
insoluble; in lower paraffins like n-hexane, it is sparingly soluble. 
I t  is a little more soluble in cycloparaffins (e.g., cyclohexane), 
whereas the solubility is appreciable in methanol and carbon 

tetrachloride. Among the studied solvents the solubility in- 
creases in the following order: n-cetane, n-hexane, cyclo- 
hexane, water, methanol, carbon tetrachloride, toluene, benz- 
ene, acetone, chloroform, and dichloromethane. 

Trioxane is highly soluble in the aromatic hydrocarbons 
benzene and toluene: this is probably due to the similarity of the 
cyclic structures. The deviations of solubilities from the ideal 
solution curve 1 show that there are large solute-solvent in- 
teractions with these solvents. The slopes of curves 2 and 3 
are slightly lower than that of curve 1, while the slopes of 
curves 4-12 are higher than that of curve 1. The heats of 
solution in the latter cases would, therefore, be higher than the 
heat of fusion. These are shown in Table 11. This extra heat 
might possibly be consumed in interaction reactions of an en- 
dothermic nature. 

I t  may be mentioned here that the closeness of the solubility 
parameters indicates the ease of solubility, so it can be inferred 
that such data for trioxane (1 1.39) and carbon tetrachloride 
(8.60) are far more apart than methylene chloride (9.86) and 
chloroform (9.30). This probably is the reason that carbon 
tetrachloride is not an ideal solvent. 
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Simple Method for the Calculation of Heat Capacities of Liquid 
Mixtures 

Amyn S. Tela 
School of Chemical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332 

A slmple method based on the correspondlng state 
prlnclple Is proposed for the calculatlon of the heat 
capacities of llquld mlxtures. The method requlres a 
knowledge of the heat capacltles of two pure llqulds as a 
functlon of temperature. For the 16 blnary llquld mlxtures 
studied In this work, average absolute devlatlons (AADs) 
between experlmental and calculated heat capacltles 
were found to be 3.03% when only the pure-component 
heat capacltles were used In the calculatlons and 1.44% 
when blnary data at a slngle temperature were used. The 
method Is simple to use and can easlly be generaked to 
multlcomponent mlxtures. 

The heat capacity of liquids and liquid mixtures is important 
in many heat-transfer calculations (appearing, for example, in 
the Prandtl number and in enthalpy expressions). Although 
there are a number of heat capacities in common use, the heat 

0021-956818311728-0083$01.5010 

capacity at constant pressure Cp is of greatest interest in 
heat-transfer work. The heat capacity of the saturated liquid 
C, is also of interest, but the difference between Cp and CMt 
is usually negligible. 

There are a number of estimation methods for the heat ca- 
pacities of pure liquids (1 ) .  However, very few specific corre- 
lations have been suggested for mixtures. Normally, the use 
of an arithmetic mole or weight fraction average of the pure- 
component values is recommended ( 7 )  although this neglects 
any contribution due to the temperature variation of the enthalpy 
of mixing. Thus 

or 

Recently, Jamieson and Cartwright (2) assessed the effective- 
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ness of eq 1 and 2 using data for both aqueous and nona- 
queous mixtures and concluded that, although the equations 
were moderately successful in predicting heat capacities of 
liquid mixtures, improvements were required to meet the high- 
er-accuracy needs of industry. They therefore proposed the 
following equations for nonaqueous mixtures 

Cpm = (wiCp1 + w2Cp2MI + CY + PI (3) 

where 

CY = (0.001411AH1 - AH210.88 - 0 . 0 8 ) ~ ~ ~ ~  (4) 

0 = (5 X 10-5)(AH1 - AH21 sin ( 3 6 0 ~ ~ )  

c p ,  = (WlC,, + W , C p 2 ) ( 1  + DWlW2) 

(5) 

(6) 

and for aqueous mixtures, they proposed 

where AH is the enthalpy of vaporization at the boiling point and 
D is a constant which was optimized for each system. 

Jamieson and Cartwright (2) found that for 215 nonaqueous 
mixtures and a total of 1083 data points, eq 1 gave a maximum 
error of 12.5%, whereas the use of eq 3 reduced this maxi- 
mum to 9.1 %, with 95% of values lying within f5 %. For 52 
aqueous systems and a total of 503 points, eq 1 gave a max- 
imum error of 16.9%, whereas the use of eq 6 reduced this 
maximum to 10.2%, with 95% of values lying within f7%. 

We have recently proposed a generalized corresponding 
state principle (GCSP) for the thermodynamic (3) and transport 
(4, 5) properties of liquids and liquid mixtures. The applications 
of the method to heat capacities at constant pressure are 
shown below. I t  is also shown that, under certain assumptions, 
the GCSP reduces to a simple mole fraction average of the 
heat capacities of the pure components at the same reduced 
temperature . 

Generallzed Correspondlng State Principle for Heat 
Capacities 

A generalized corresponding state principle (GCSP) for 
thermodynamic and transport properties has recently been 
proposed (3-5). According to the GSCP, a reduced property 
X of any pure fluid (with critical constants T,, P ,, V,, molecular 
weight M ,  and acentric factor w) can be obtained from the 
known properties of two reference fluids (denoted by super- 
scripts r l  and r2) at the same reduced temperature and pres- 
sure as follows: 

where X is a property such as compressibility, reduced vis- 
cosity, or reduced thermal conductivity. We may write an 
analogous expression for the dimensionless residual heat ca- 
pacity as follows: 

The two reference fluids r l  and r2 are chosen so that they are 
similar to the pure fluid of interest or, in the case of mixtures, 
to the key components of interest. I f  r l  is a simple fluid of zero 
acentric factor, then eq 8 reduces to the equation proposed by 
Lee and Kesler (6). Equation 8 states that, given the residual 
heat capacities of two reference fluids as functions of T, and 
P, (or V,), we may predict the residual heat capacities of any 
(similar) fluid of interest as a function of T, and P, (or V,). 

Equation 8 may be extended to mixtures using, for example, 
a one-fluid model to replace T,, V,, M ,  and w of a pure fluid 

by the pseudocritical properties T,,, V,,, Mm, and w, of a 
hypothetical equivalent substance as follows: 

(9) 

M, = CX, Mi 

wm = Cx/w i  (12) 

(1 1) 
/ 

There is some theoretical justification (7) for using the van der 
Waals one-fluid model (eq 9 and 10) for mixtures of nonpolar 
molecules which do not differ greatly in their sizes. Equation 
1 1, on the other hand, arises naturally from a mass balance. 
However, eq 12 is completely arbitrary-its only justification 
being the success with which it has been applied in our previous 
studies. 

The one-fluid model can be used to obtain the properties of 
mixtures provided values can be assigned to the cross-param- 
eters Tw and V,, when i # j .  Various mixing rules have been 
tried in this study including a geometric mean rule for T,, and 
an arithmetic mean rule for V,,,. However, there was little 
improvement over the mixing rules used in our previous studies, 
viz. 

Tc,Vc,I = E,,(TcrVc/lTc~Vc~)1~2 (13) 

VCI = ye( vcii 'I3 + v CU .. 1/3)3 (14) 

and results for these rules are reported below. In eq 13, E, is 
a binary interaction coefficient which must be calculated from 
experimental data. An advantage of using appropriate refer- 
ence fluids is that a single value of the binary interaction 
coefficient is often sufficient to characterize each binary mix- 
ture. Its value reflects, in part, our inability to represent in- 
termolecular forces by means of eq 9-14. 

For the special case when the two pure components of a 
binary mixture are used as the reference fluids, use of eq 12 
leads to the simplification 

(15) 

and, since Cpm' = x l C p l *  + x2Cp2', we may write 

Cpm = x1Cp1 + x2Cp2 (16) 

The difference between eq 2 and eq 16 is that, by convention, 
eq 2 refers to heat capacities at the same temperature 
whereas the derivation of eq 16 requires that the heat capac- 
ities be evaluated at the reduced temperature and pressure of 
the mixture. Since pressure has little effect on the heat ca- 
pacities of liquids, we may write eq 16 as 

C p m [ T R I  = x l c p l [ T R 1  + x,?Cp2[TRI (17) 

Predictions using eq 17 are shown below. I t  should be added 
that, in the general case, the heat capacities are functions of 
both T, and P,. 

Reference-Fluld Calculations 

were correlated by means of the relationship 
The heat capacities of the pure-component reference fluids 

In ( C p / R )  = A - B / T ,  (18) 

where A and B are constants and pressure effects have been 
neglected. The choice of the reference equation is arbitrary. 
Other, more accurate and/or more complex expressions could 
equally have been used (a four-constant polynomial in T, was 
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Table I. Constants of Eq 18 for the Reference 
Fluids for Each System 

experimental data used in the comparisons were taken from 
the compilation of Jamieson and Cartwright. Table I1 shows 

no. system A1 Bl A ,  B, average absolute deviations between experimental and calcu- 
lated heat capacities both with the binary interaction coefficient (CH,),CO + CS, 3.1506 0.2438 2.5450 0.1616 

(CH,),CO + CHC1, 3.1506 0.2438 2.9470 0.1830 C;,2 set equal to 1.0 (Le., using pure-component data only) and 
C.H. + CCl, 3.6107 0.4400 3.2316 0.2637 with the binary interaction coefficient optimized by using the 
CiH; + c-C,-H,, 
C6H6 + CH,ClCH,CI 
C,H, + C,H,CH, 
CCl, + CHC1, 
cC,-Hl, + C,H,OH 

cC,H,,CH, + C,H,OH 
C,H,CH, + C,H,OH 
n-C,H,, + iC,H,OH 

CH,OH + H,O 

(CH,OH), + H,O 

n-C7H14 + C,H,OH 

n-C,H,, + C,H, 

n-C,H,OH + H,O 

Table 11. Summary of Results 

4.4651 1.1085 4.6450 
3.3498 0.2985 3.1038 
3.6760 0.4770 3.5225 
3.0826 0.1826 3.1808 
3.7769 0.4568 4.0193 
3.8983 0.3336 3.9368 
3.5910 0.2553 3.2197 
3.6152 0.3425 4.2453 
3.5353 0.1375 3.6269 
3.6524 0.4241 4.5219 
2.8410 0.3315 2.1492 
3.6893 0.4673 2.1473 
3.5212 0.2988 2.2178 

1.0824 
0.1906 
0.3094 
0.3008 
0.8259 
0.7733 
0.3583 
0.9565 
0.4278 
1.5152 

-0.0258 
-0.0268 

0.0065 

AAD, % no. of 
system data E l 2  = 

no.a points temp range, K E , ,  = 1.0 iopt 
1 18 293.2-313.2 2.17 0.45 
2 24 293.2-323.2 2.48 0.58 
3 25 293.2-333.2 0.98 0.85 
4 9 453.2-473.2 0.42 0.05 
5 36 293.2-343.2 0.57 0.56 
6 35 293.2-333.2 0.78 0.62 
7 20 293.2-323.2 0.66 0.46 
8 30 303.2-343.2 5.06 2.63 
9 36 293.2-343.2 3.53 2.09 

10 35 223.2-303.2 2.38 1.43 
11 37 303.2-346.2 8.14 2.27 
12 35 205.4-304.7 3.10 1.64 
13 18 294.2-327.2 3.06 0.79 
14 9 275.1-313.2 5.75 3.73 
15 9 215.1-313.2 9.73 6.33 

9 293.2-351.5 1.35 1.25 - - -  16 

385 3.03 1.44 

EOPt  

0.781 
0.137 
0.958 
1.019 
1.007 
0.976 
1.046 
0.803 
0.836 
0.886 
0.711 
0.839 
0.911 
0.625 
0.413 
0.920 

The system no. corresponds to that used in Table I. 

also used but did not yield significantly better results). The 
choice of the reference substances is also arbitrary. However, 
the use of the simple relationship given by eq 17 requires that 
the two pure components be used as the reference substances 
for each binary mixture. Constants A and B for various ref- 
erence substances are given in Table I and are applicable in 
the temperature range given in Table 11. In the general case, 
the actual heat capacities of the reference fluids at the same 
reduced conditions may be used. The data were taken from 
the compilation of Jamieson and Cartwright (2). 

I t  should be added that eq 8 does not require that the pure 
components be used as the reference substances. In fact, the 
expression may be used to predict the (unknown) heat capac- 
ities of the pure components given the (known) heat capacities 
of two (similar) fluids at the same reduced conditions. 

Results 

Sixteen binary systems and a total of 385 data points were 
examined using eq 17. Only those systems where a single 
investigator had measured the heat capacities at three or more 
different temperatures were selected for study. The systems 
included nonpolar mixtures, mixtures containing polar molecules, 
and aqueous mixtures. The results are shown in Table 11. The 

binary mixture data at the lowest temperature. To a good 
approximation, f 1 2  was found to be independent of temperature 
and composition. Thus, the use of the same value of t12 over 
a 100 O C  range of temperature in some cases did not lead to 
any significant decrease in accuracy of the predictions. The 
average absolute deviation between calculation and experiment 
was found to be 3.03% with ail [,* = 1.0. The average de- 
viations could be reduced to 1.44% if a single binary interaction 
coefficient (independent of temperature and composition) was 
included in the calculations. As expected, the method works 
best for nonpolar mixtures and is least accurate for aqueous 
mixtures. The larger than average deviations for aqueous 
systems are in part due to the inadequacy of the reference-fluid 
equation (eq 18) for water and in part due to the fact that water 
is strongly associated in solution. Nevertheless, the method 
compares favorably with available methods for all systems. An 
additional advantage is that eq 17 can easily be generalized to 
multicomponent systems and requires, at most, only binary 
information at a single temperature for the prediction of heat 
capacities of multicomponent mixtures. 

Glossary 
A , 6 reference-fluid-equation constants 
C heat capacity 
D constant in eq 6 
H enthalpy 
M molecular weight 
R gas constant 
T temperature 
V molar volume 
W weight fraction 
X mole fraction 

Greek Letters 

a7 P constants in eq 3 
0 acentric factor 
4 binary interaction coefficient 

Subscripts 
C critical value 
i ,  i component i ,  i 
m mixture value 
P constant pressure 
R 

Llterature Clted 

reduced value, e.g., T,  = T / T ,  
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